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ABSTRACT: Soil moisture is an important variable for numerous scientific disciplines, and therefore provision of accurate

and timely soil moisture information is critical. Recent initiatives, such as the National Soil Moisture Network effort, have

increased the spatial coverage and quality of soil moisture monitoring infrastructure across the contiguous United States.

As a result, the foundation has been laid for a high-resolution, real-time gridded soil moisture product that leverages data

from in situ networks, satellite platforms, and land surface models. An important precursor to this development is a

comprehensive, national-scale assessment of in situ soil moisture data fidelity. Additionally, evaluation of the United

States’s current in situ soil moisture monitoring infrastructure can provide a means toward more informed satellite and

model calibration and validation. This study employs a triple collocation approach to evaluate the fidelity of in situ soil

moisture observations from over 1200 stations across the contiguous United States. The primary goal of the study is to

determine the monitoring stations that are best suited for 1) inclusion in national-scale soil moisture datasets, 2) deriving

in situ–informed gridded soil moisture products, and 3) validating and benchmarking satellite andmodel soil moisture data.

We find that 90% of the 1233 stations evaluated exhibit high spatial consistency with satellite remote sensing and land

surface model soil moisture datasets. In situ error did not significantly vary by climate, soil type, or sensor technology, but

instead was a function of station-specific properties such as land cover and station siting.
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1. Introduction
Soil moisture is a critical variable, impacting and informing a

wide variety of scientific disciplines and applications. Soil

moisture influences the climate system throughmodification of

energy and moisture fluxes into the boundary layer, thereby

influencing temperature, humidity, and precipitation (McPherson

2007; Seneviratne et al. 2010; Santanello et al. 2011). This in-

fluence, or memory, from anomalously wet or dry soils can

have a persistent impact on the atmosphere, influencing the

climate on monthly to seasonal time scales (Dirmeyer et al.

2009; Lorenz et al. 2010; Orth and Seneviratne 2014).

Therefore, accurate soil moisture information is critical for

subseasonal-to-seasonal climate prediction as well as fore-

casting extreme events at those time scales (Mahanama et al.

2008; Guo et al. 2011; Ford et al. 2018).

In addition to playing an integral role in the global climate

system, soil moisture is often used as an indicator of agricul-

tural drought (Quiring and Papakryiakou 2003). Recent stud-

ies have determined soil moisture as a key indicator of, and

possible early warning for, flash drought in the United States

(Ford et al. 2015; Ford and Labosier 2017; Otkin et al. 2018).

Other important uses of soil moisture include for agricul-

tural monitoring and decision-making (Phillips et al. 2014;

Champagne et al. 2015; Soulis et al. 2015), weather prediction

(Scipal et al. 2008; de Rosnay et al. 2014), streamflow and flood

forecasting (Brocca et al. 2012; Wanders et al. 2014; Silvestro

and Rebora 2014), soil and water quality monitoring (Quinn

et al. 2010; Lloyd et al. 2016), military exercises (Flores et al.

2014), and storm power outage prediction (Quiring et al. 2011;

Nateghi et al. 2014). The value of high-quality, timely soil

moisture information is undeniable, echoed by the World

Meteorological Organization deeming soil moisture as an es-

sential climate variable (https://gcos.wmo.int/en/essential-

climate-variables/soil-moisture).

Because of its importance for countless, diverse applica-

tions, many operational and experimental soil moisture

datasets have been made available over the last two de-

cades. The majority of these products are based on model-

simulated soil moisture. For example, the University of

Washington Experimental Surface Water Monitor (Wood

2008), the NOAA Climate Prediction Center soil moisture

model (Fan and van denDool 2004), theNorthAmerican Land

Data Assimilation System Phase 2 (NLDAS-2; Xia et al. 2012),

and the Princeton Drought Monitoring and Forecasting proj-

ect (Sheffield et al. 2014) all provide model-simulated soil

moisture to support many applications. However, there are

limitations to using model-derived soil moisture since each

model has biases, and model performance varies significantly

from region to region and model to model (Xia et al. 2015;

Crow et al. 2018). Soil moisture monitoring from satellite re-

mote sensing has advanced significantly over the last two de-

cades to help address the observation needs left by modeling.

The advantages of satellite remote sensing soil moisture in-

clude 1) actual observations of a quantity directly related to

soil moisture, 2) spatial representativeness, and 3) relativelyCorresponding author: Trent W. Ford, twford@illinois.edu
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high temporal resolution that is sufficient for applications that

require daily to weekly information. There are also limitations

with remote sensing products including the inability to mea-

sure root zone soil moisture, spatiotemporal discontinuities

in coverage, and limited historical data. Consequently, many

operational and experimental soil moisture information sys-

tems leverage the strengths of satellite remote sensing and

land surface modeling to produce soil moisture for many

applications.

Likewise, in situ soil moisture observations are vital for a

comprehensive soil moisturemonitoring infrastructure. Direct,

in situ observations provide the most accurate depiction of soil

moisture conditions at the point of measurement, which is why

they are frequently used to validate or benchmark model and

satellite remote sensing soil moisture datasets (Crow et al.

2012; Sanchez et al. 2012; Chen et al. 2017; Xia et al. 2014; Ford

and Quiring 2019). Previous studies have demonstrated that

the inclusion of in situ observations improves the overall

quality and usefulness of soil moisture information formultiple

applications (Koster et al. 2011; Ochsner et al. 2013; Dumedah

and Coulibably 2013; Ford et al. 2015; Sehgal et al. 2017);

however, these studies are limited in scope (either spatially

or temporally) because historically there has been relatively

little effort devoted to assembling and homogenizing in situ

soil moisture measurements for national-scale monitoring.

Therefore, the lack of in situ soil moisture for large-scale

monitoring efforts is less an indictment of the importance of

in situ observations and more reflective of the historically de-

ficient in situ monitoring infrastructure in the United States.

In response to this need, theNational SoilMoistureNetwork

(NSMN) community (https://www.drought.gov/drought/data-

gallery/national-soil-moisture-network) was tasked with building

up the United States’ in situ soil moisture monitoring capa-

bilities while simultaneously improving the usability of our

existing soil moisture monitoring infrastructure (Clayton et al.

2019). During the NSMN workshop in June 2016, near-real-

time, national soil moisture datasets that integrate in situ,

satellite-derived, and model-derived soil moisture were iden-

tified as the highest priority by the workshop participants

(McNutt et al. 2016). There was a broad consensus among the

52 workshop participants who represented a variety of federal

and state agencies, universities, and the private sector that a

high-resolution gridded soil moisture product that leverages

multiple soil moisture data sources is needed. Their sentiment

reflects how critical in situ soil moisture observations are for

national-scale monitoring, as well as for calibrating and vali-

dating the suite of satellite- and model-based soil moisture

products.

As a result of the ongoing NSMN effort and other previous

initiatives, the foundation has been laid for a high-resolution,

near-real-time gridded soil moisture product that utilizes mul-

tiple in situ networks, satellite platforms, and land surface

models. An important precursor to the development of this type

of product is a comprehensive, national-scale assessment of

in situ soil moisture data fidelity. Additionally, evaluation of the

United States current in situ soil moisture monitoring infra-

structure can inform satellite and model validation and bench-

marking. Many previous studies have used in situ observations

for satellite and model validation without ensuring the fidelity

of these ground ‘‘truth’’ observations.

To address this critical knowledge gap, this study employs

triple collocation to evaluate the fidelity of in situ soil moisture

observations from over 1200 stations across the contiguous

United States. The primary goal of the study is to determine

the monitoring stations that are best suited for 1) inclusion in

the NSMN, 2) deriving in situ–informed gridded soil moisture

products, and 3) validating and benchmarking satellite- and

model-derived soil moisture data. This is the first study to

complete an in situ data validation effort at this scale in the

United States.

2. Data and methods

a. In situ soil moisture
Daily in situ soil moisture observations from 1233 stations that

are part of 15 monitoring networks (Table 1, Fig. 1) were down-

loaded in January and June 2020 from nationalsoilmoisture.com.

These networks included the U.S. Climate Reference Network

(CRN, https://www.ncdc.noaa.gov/crn/), Delaware Environmental

Observing System (DEOS, http://www.deos.udel.edu/data/),

North Carolina Environment and Climate Observing Network

(ECONet, https://climate.ncsu.edu/econet), Illinois Climate

Network (ICN, https://www.isws.illinois.edu/warm/), Kansas

Mesonet (KS Mesonet, https://mesonet.k-state.edu/), New

Jersey Weather and Climate Network (NJWCN, https://

www.njweather.org/), NOAA Hydrometeorological Testbed

(NOAA HMT, https://hmt.noaa.gov/), New York Mesonet

(NYMesonet, http://www.nysmesonet.org/), OklahomaMesonet

(OK Mesonet, http://mesonet.org/), Soil Climate Analysis

Network (SCAN, https://www.wcc.nrcs.usda.gov/scan/), South

Dakota Mesonet (SD Mesonet, https://climate.sdstate.edu/),

Snowpack Telemetry (SNOTEL, https://www.wcc.nrcs.usda.gov/

snow/), Texas Soil Observation Network (TxSon, https://

www.beg.utexas.edu/research/programs/txson), Georgia Automated

Environmental Monitoring Network (GA AEMN, http://

www.georgiaweather.net/), and West Texas Mesonet (WTX

Mesonet, http://www.depts.ttu.edu/nwi/research/facilities/wtm/

index.php).

We selected stations from all networks in the United States

from which data were available. Stations were included if they

had at least one year of valid (i.e., not missing) soil moisture

measurements. This meant that we did not include stations

with fewer than 365 valid observations, nor did we include

networks that had a majority of stations with fewer than 365

valid observations. The 1-yr threshold was determined based

on results of previous studies using similar evaluation methods

(e.g., Dirmeyer et al. 2016; Ford and Quiring 2019), which

found that short soil moisture data records exhibited high

variability in temporal stability. Therefore, stations with rec-

ords shorter than 365 days were not included in this study. All

in situ data were acquired in units of volumetric water content

u (m3m23), and represent the original data from the networks

with no additional quality control. A general overview of each

in situ network is included in Table 1 and station locations are

shown in Fig. 1. It is important to note that the number of

stations from each network used in this study (and reported in
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Table 1) does not necessarily reflect the total number of sta-

tions in that network, as some stations’ records were not suf-

ficient for inclusion in this study.

b. Land cover
We use the U.S. Department of Agriculture (USDA)

Cropland Data Layer (CDL, https://www.nass.usda.gov/

Research_and_Science/Cropland/SARS1a.php) to character-

ize land use and land cover surrounding the in situ observation

stations. The CDL is a 30m, national-scale dataset that is

specifically focused for agricultural land use (Boryan et al.

2011; Sandborn et al. 2019). It is produced from a supervised

classification of land cover using both optical remote sensing

and ground reference data collected from the USDA Farm

Service Agency. The CDL includes many of the traditional

land cover classes in the National Land Cover Database, such

as grass, shrubland, and deciduous and evergreen forest;

however, the benefit of using the CDL is its numerous agri-

cultural land cover classes, such as corn, winter wheat, soy-

beans, and cotton.

We extracted CDL land cover information within the Noah

land surface model grid cell in which each in situ station was

situated. The geographic size of this area is approximately

156 km2, and information extracted represents land cover

within a moderate spatial scale area surrounding the sta-

tion. Specifically, we extracted two quantities from the

CDL: 1) the land cover classes that represent the largest

percentage of the area surrounding the in situ station, and

2) the total number of individual land cover classes repre-

sented within that area. We use the 2019 version of the CDL

for this study; however, crop rotations and longer-term changes

in land use could affect the type of land cover surrounding

each station. Therefore, we performed a sensitivity analysis

using the CDL from 2018, 2017, 2010, and 2009. The results

using these CDL layers were quantitatively similar to that

from the 2019 layer. We also compared these results to those

from extracting CDL information using a larger 625 km2 area

surrounding the in situ station, which was consistent with the

size of the satellite remote sensing pixel used in the triple

collocation analysis. The results (not shown) were also

quantitatively similar to those using the land surface model

pixel size.

c. Triple collocation for in situ validation
Triple collocation characterizes the total anomaly error of

the in situ observations with respect to two independent soil

moisture datasets, in this case soil moisture from a land surface

model and satellite. Implemented in this manner, triple collo-

cation can assess the consistency between in situ, point-based

observations and soil moisture information over a larger spatial

area (e.g., ;10–50 km), represented by the model and satellite

products. The triple collocation error model is defined as

i5a
i
1b

i
u1 «

i
, (1)

where i 2 [X, Y, Z] are three spatially and temporally collo-

cated soil moisture datasets. The unknown, true soil moisture is

given by u, while ai and bi are systematic gains of dataset iwith

respect to u. Prior to computing the error variance, two of the

soil moisture datasets must be rescaled with respect to the third

dataset. Numerous rescaling techniques have been developed

and applied for this purpose in the literature, including linear

regression and variance matching. However, Yilmaz and Crow

(2013) demonstrate that triple collocation is the only method

that provides consistent, unbiased estimates of scaling coeffi-

cients, particularly in the case of variable signal-to-noise ratios

between soil moisture datasets. Therefore, we use triple col-

location to estimate scaling factors for the model X and sat-

ellite Z datasets to scale them to the reference data, which in

this case are the in situ observations Y. Following the notation

of Gruber et al. (2017), the rescaling coefficients bi*are calcu-

lated as

b
Y
* 5

h(X2X)(Z2Z)i
h(Y2Y)(Z2Z)i

b
Z
*5

h(X2X)(Y2Y)i
h(Z2Z)(Y2Y)i . (2)

The overbar denotes the mean of each times series, and the

angled brackets hi represent the average of the cross-multiplied

differences. The model and satellite datasets are then rescaled

such that

u
Y
5b

Y
*(Y2Y)1X ,

u
Z
5b

Z
*(Z2Z)1X , (3)

FIG. 1. Station locations by network.
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where uY and uZ represent the rescaled measurements of the

model and satellite datasets, respectively. Loew and Schlenz

(2011) found that the representativity of in situ measurements

for (satellite) pixel-scale soil moisture is time varying, partic-

ularly at the seasonal scale. Therefore, we follow the approach

of Miralles et al. (2010) and deseasonalize soil moisture ob-

servations prior to rescaling. Specifically, we subtract from

each daily soil moisture measurement the average of all days in

the calendar month in which each measurement was taken,

thereby accounting for the time varying nature of triple col-

location error estimates.

In this study we use the European SpaceAgency Program on

Global Monitoring of Essential Climate Variables (ESA-CCI,

Liu et al. 2012; Dorigo et al. 2017; Gruber et al. 2017) satellite

remote sensing soil moisture dataset and the Noah land surface

model (Chen et al. 1996) soil moisture dataset for the TC

analysis. ESA-CCI is a merged active–passive product that

has a relatively long data record (1992–2019) and a 0.258 hor-
izontal resolution. We use the ESA-CCI dataset in this study

instead of an individual platform such as Soil Moisture Active

Passive (SMAP; Entekhabi et al. 2010) or Soil Moisture and

Ocean Salinity (SMOS L3; Kerr et al. 2010) because of their

relatively short data records (;5 years and ;11 years, re-

spectively). ESA-CCI provides daily soil moisture observa-

tions in units of volumetric water content (m3m23). The Noah

soil moisture dataset, which is part of the National Land

Data Assimilation System (NLDAS-2, Xia et al. 2012) was

selected as a third independent soil moisture source because

1) it has been previously shown to have high data fidelity (Xia

et al. 2015; Ford and Quiring 2019), and 2) NLDAS-2 soil

moisture data are available since 1979 and this covers the en-

tire period of record for the in situ and satellite data. Noah

simulates hourly soil moisture at multiple depths. Here we use

0–10-, 10–40-, and 40–100-cm layers. The spatial resolution of

NLDAS-2 is 1/88. Hourly volumetric water content fields from

Noah were averaged to daily to match the temporal resolution

of the in situ and satellite datasets. It is important to note that

neither ESA-CCI nor Noah use any of the in situ observations

for their product calibration, therefore all three datasets are

independent.

Mean random errors ei are calculated for each dataset (in

situ, ESA-CCI, Noah) using the rescaled measurements from

Eq. (2) such that

e
x
5 h(u

x
2 u

y
)(u

x
2 u

z
)i , (4)

where ex is the mean random anomaly error (RAE; m3m23) of

dataset x, and ux, uy, and uz are rescaled measurements from

datasets x, y, and z, respectively. Similar to Eq. (2) the angled

brackets represent the averaging of the cross-multiplied

differences.

Triple collocation is often used to characterize upscaling

errors in sparse in situ soil moisture measurements and pro-

vides a fair evaluation of coarse-scale remote sensing datasets

by removing these upscaling errors (Loew and Schlenz 2011;

Miralles et al. 2010). Miralles et al. (2010) in particular found

that the triple collocation approach can estimate point-to-footprint

soil moisture sampling errors to within 0.000 59 (m3m23), which

is then traditionally removed to provide a fairer validation of

the remote sensing products. In this study we use a triple col-

location approach similar to that of Miralles et al. (2010) and

Chen et al. (2017), but instead focus on the in situ errors as-

sociated with point-based sampling of an area the size of a

typical grid cell/pixel. Specifically, sensors and stations with

low RAE values are in general more strongly correlated with

satellite and model datasets, which represent spatial variations

in soil moisture at scales around 10–50 km and therefore are

more beneficial for both 1) satellite and model calibration and

validation, and 2) inclusion in a national-scale in situ–informed

gridded soil moisture dataset such as that being developed as

part of the NSMN effort (McNutt et al. 2016; Clayton et al.

2019). This strategy for large-scale in situ soil moisture quality

assessment is similar to Gruber et al. (2013), but focused on

both national-scale and mesoscale monitoring networks in the

contiguous United States.

It is important to note that although low RAE implies

stronger consistency between the three soil moisture datasets,

it cannot be used to infer accuracy without a more compre-

hensive assessment of potential biases in each of the datasets.

In addition, RAE provides insight about one aspect of in situ

soil moisture data fidelity, spatial consistency. There are sev-

eral other aspects of fidelity that are also important to consider

for in situ observations, including data completeness, data re-

cord length, site management, and/or metadata reporting,

and measurement accuracy. The last of these is typically

assessed using a ‘‘true’’ measure of soil moisture such as a

gravimetric measurement (e.g., Scott et al. 2013). However, the

spatial consistency information provided by triple collocation

is valuable for understanding in situ soil moisture error across

the contiguous United States, and the local-to-national factors

that explain the variations in error.

3. Results

a. Broad random anomaly error patterns

Distributions of RAE from the 1233 stations are consider-

ably right skewed at all three depths (Fig. 2). There are dif-

ferences in RAE distributions between measurement depths

(Fig. 2). The 5-cm observations exhibit a statistically signifi-

cantly (a 5 0.05) higher median RAE than observations

deeper in the soil column, based on a Kolmogorov–Smirnov

FIG. 2. Cumulative distribution functions of RAE for all stations

in all networks evaluated. Distributions show stations grouped by

measurement depth.
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two-sample test. As we discuss later in the paper, local-scale

differences in land cover contribute more to differences in

5-cm RAE than they do to deeper soil moisture measure-

ments. Based on analysis using far fewer stations, Ford and

Quiring (2019) imposed a RAE threshold of 0.15 m3 m23

when determining stations with adequate data fidelity for

satellite/model validation. However, our analysis indicates

that over 90% of stations evaluated in this study have a RAE

less than 0.10m3m23. This suggests that most stations mon-

itoring soil moisture in the contiguous United States exhibit

high spatial consistency with larger-scale representations of

soil moisture. All the RAE distributions have large outliers

(Fig. 2), and there are statistically significant differences in

RAE between networks (Fig. 3), suggesting that factors other

than measurement depth also influence data fidelity. We fur-

ther analyze RAE to identify what is responsible for causing

the outliers.

The data record length of in situ soil moisture observations is

an important aspect of data fidelity, because of the potential

instability of anomalies calculated from relatively short data

records (e.g., Ford et al. 2016). However, RAE at the 1233

stations assessed in this study does not vary as a statistically

significant function of data record length (Fig. 4). This finding is

consistent at all measurement depths. In addition, further

analysis (not shown) indicates RAE does not significantly vary

as a function of soil type or measurement sensor (e.g., heat

dissipation versus impedance dielectric). Figure 5 shows the

national-scale spatial variability of RAE at each measurement

depth increment. There are no apparent spatial patterns in

RAE that would imply effects of large-scale drivers such as

aridity, climatological precipitation variability, or air temper-

ature range and variability. However, we do find statistically

significant differences in the median RAE grouped by sur-

rounding land cover, which is discussed in the following section.

FIG. 3. Boxplots show distributions of RAE (m3m23) for all stations within each network. The network median RAE is shown in the

white line.
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b. Land cover impacts
The 2019 USDA Crop Data Layer is used to assess land use

and land cover within an approximately 156 km2 region sur-

rounding each in situ station resides. Specifically, we examined

1) the land cover that makes up the largest proportion of the

area surrounding the station and 2) the land cover varia-

bility—in this case the number of different land cover classes

within the surrounding area. When stations are grouped by

land cover, a one-way analysis of variance (ANOVA) finds

statistically significant (a5 0.05) differences in RAE between

groups. Multiple comparison tests, summarized by Fig. 6, in-

dicate stations surrounded by cotton and winter wheat exhibit

significantly higher RAE. In addition, the differences between

land cover types are greatest at shallower measurement depths

and tend to be least in the 50–60- and 75–100-cm observations.

The ANOVA results and boxplots in Fig. 6 suggest the land

cover surrounding in situ stations does influence RAE and

therefore the spatial consistency of those in situ observations

with larger-scale soil moisture datasets. However, it is unclear

from this analysis if these variations are confounded by dif-

ferences in network-specific factors such as sensor calibration,

installation procedures, or data quality control. To better iso-

late and diagnose the modulating role of land cover, we assess

RAE by land cover type separately for two networks, which

both exhibit a relatively large range of station RAE values: the

ECONet and WTX Mesonet networks.

WTX Mesonet stations have a high network-average RAE

compared to other networks (Fig. 3). All WTX Mesonet sta-

tions are sited in either grassland or shrubland, but 30 of the

67 WTX Mesonet stations are surrounded by winter wheat or

irrigated cotton. Like the national-scale land cover analysis

(Fig. 6), RAE atWTXMesonet stations varies significantly as a

function of surrounding land cover according to a one-way

ANOVA. Specifically, the median RAE of stations surrounded

FIG. 4. RAE grouped by observation record length for each depth interval. The red line in the center of each box

indicates the group median.

FIG. 5. Maps show RAE by measurement depth for all 1233 stations across the United States.
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bywinter wheat is significantly higher than those of surrounded

by cotton, shrubland, and grass/pasture (Fig. 7). Previous

studies have documented issues with representing soil moisture

in predominantly winter wheat landscapes using observations

from stations sited in nonagricultural land cover (Patrignani

andOchsner 2018). The differences between land cover tend to

decrease with measurement depth and are not statistically

significant at either the 60- or 75-cm depths for WTXMesonet

stations. Interestingly, RAE at stations in the other two net-

works with a nonnegligible number of stations sited in pre-

dominantly winter wheat land cover, the Oklahoma Mesonet

and Kansas Mesonet, also display a noticeable increase over

stations with other surrounding land cover types that are not

winter wheat; however, these differences are neither to the

same extent as the WTX Mesonet nor statistically significant.

This is despite the soil moisture representativeness issues in

winter wheat landscapes reported by Patrignani and Ochsner

(2018) using Oklahoma Mesonet observations.

Another interesting finding from theWTXMesonet analysis

is that stations sited in nonirrigated grass or shrubland and

surrounded by irrigated cotton fields did not experience a no-

ticeable increase in RAE as compared to stations where the

land cover at the site was consistent with their surroundings

(Fig. 6). Only three of these stations—Wall, St. Lawrence, and

Memphis—had RAE . 0.10 at any measurement depth.

According to Wes Burgett of the WTX Mesonet, these three

stations suffer from a multitude of issues that likely affect

their spatial representativeness, including irrigation runoff

(W. Burgett 2020, personal communication). Therefore, the

high RAE at these three sites is likely due to poor siting with

FIG. 6. Boxplots show RAE grouped by land cover surrounding each station. All 1233 stations are represented in

the boxplots, which are shown by measurement depth.

FIG. 7. Boxplots show RAE grouped by land cover surrounding each West Texas Mesonet station. Boxplots are

shown by measurement depth.
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respect to local hydrology rather than the surrounding land

cover. Outside of land cover impacts, high RAE at Aspermont

(grass/pasture land cover) and Goodlett (shrubland land

cover) stations of the WTX Mesonet are likely due to damage

to the sensors from animals (W. Burgett 2020, personal

communication).

ECONet exhibits the highest network-average 15–30-cm

RAE. This is the only soil layer in which ECONetmonitors soil

moisture. Most ECONet stations are sited in grassland, but

surrounded by deciduous forest, evergreen forest, or wetlands.

Unlike WTX Mesonet, the RAE for ECONet does not sig-

nificantly vary as a function of land cover. Upon closer

inspection, ECONet stations with shorter record lengths, par-

ticularly those less than 10 years, exhibited very low RAE,

whereas stations with 101 years of observations exhibited a

larger range of RAE values (Fig. 8a). While there is not a

statistically significantly relationship between RAE and ob-

servation record length on a national scale (e.g., Fig. 4), it ap-

pears that this may have an influence on within network

variations in RAE. According to Sean Heuser of the State

Climate Office of North Carolina, ECONet began changing

soil moisture sensors from the Decagon ECHO2x to the Delta-

T ML3 sensor around 11 years ago (S. Heuser 2020, personal

communication). We examined the influence of this sensor

change by recomputing RAE at all ECONet stations using

only observations from 2014 to 2019, after the ECHO2x

sensors had been replaced. The results show that RAE

computed over the shorter 6-yr period is lower than that

computed over the entire observation record at most

ECONet sites (Fig. 8b). At the Piedmont Research Station

in Salisbury (i.e., SALI station), 10–40-cm RAE decreased

from 0.24 to less than 0.05 (m3 m23) when using only Delta-

T ML3 observations. There are a few sites where the RAE

did not change, or even increased, during the 2014–19 period.

However, according to Sean Heuser, these sites are located in

soils that are not representative of the surrounding areas

(S. Heuser 2020, personal communication). This explains why

they have high RAE values and why the RAE was unrespon-

sive to sensor changes.

4. Discussion and conclusions
Soil moisture is a key variable for numerous scientific and

nonscientific domains, and in situ soil moisture monitoring is a

tremendous resource. However, relative to atmospheric vari-

ables such as temperature and precipitation, there are few

in situ soil moisture stations across the contiguous United

States. Large-scale in situ soil moisture monitoring efforts such

as the International SoilMoisture Network (Dorigo et al. 2011)

and the NSMN (McNutt et al. 2016) have provided the foun-

dation for improving soil moisture monitoring globally and

setting standards for continued expansion of monitoring in-

frastructure. As new in situ monitoring networks are created

and existing networks expand their monitoring capability, it is

critical to understand the quality and representativeness of the

in situ observations, particularly for large-scale climate and

drought monitoring and for the calibration/validation of land

surface models and satellite soil moisture products.

This study represents the first attempt to assess the fidelity of

in situ observations from more than 1200 stations across the

United States as part of the National Soil Moisture Network

effort. We use triple collocation to quantify in situ measure-

ment random anomaly error and spatial consistency. Overall,

we find that measurements at the vast majority of the assessed

stations are generally of high quality based on this metric. For

example, over 90% of the 3633 station depths assessed exhibit

RAE under 0.10 (m3m23).

Triple collocation analysis revealed few obvious patterns in

the large-scale factors influencing in situ observations spatial

representativeness. Station RAE did significantly vary by

measurement depth, with 5-cm measurements exhibiting a

higher median RAE than other depths. However, RAE was

relatively insensitive to observation record length, soil mois-

ture sensor type, and soil texture. Furthermore, we did not find

any apparent influence of frozen soils or sensor drift on RAE.

FIG. 8. (left) Scatterplot showing 10–40-cm RAE and observation record length (days) at each North Carolina

ECONet station. (right) Scatterplot showing 10–40-cm RAE from each ECONet station computed over the entire

observation record (x axis) and computed only using observations from 2014 to 2019 (y axis).
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The lack of significant patterns or trends of RAE by climate or

soil is consistent with Gruber et al. (2013), who assessed in situ

soil moisture fidelity using triple collocation across a similarly

large region.

We did find statistically significant variations in RAE as a

function of land cover. Specifically, stations sited in non-

agricultural land cover, but largely surrounded by winter wheat

exhibited significantly higher RAE than sites surrounded by

nonwinter wheat land cover, including cotton, corn, and forest.

The fact that stations surrounded by winter wheat exhibited

high RAE is not necessarily surprising, given that the majority

of in situ soil moisture observing stations in the United States,

and approximately 96% of all stations examined here are sited

in land cover that is best described as grassland or some other

type of ‘‘natural’’ land cover such as shrubland. Particularly in

forested and agricultural regions of the United States, the

immediate land cover of the in situ site is not representative of

larger-scale land use, and this discrepancy has been shown to

affect in situ soil moisture representativeness (Han et al. 2012;

Chen et al. 2017; Patrignani and Ochsner 2018). Patrignani and

Ochsner (2018) point to asymmetry in the seasonality of soil

moisture underlying grass with that underlying winter wheat in

Oklahoma, driven by dissimilar vegetation phenology. Chen

et al. (2017), based on a triple collocation analysis using SCAN

and CRN stations, reported higher error (less spatially repre-

sentative) at stations within pixels containing large water

bodies or forests. In our larger sample of stations, we find

surrounding land cover does influence in situ measurement

upscaling error, but that this impact is larger over agricultural

land than forests.

Our findings demonstrate that issues arise from the perva-

sive siting of in situ soil moisture monitoring stations in

grassland, shrubland, or bare soil, which in many cases are not

representative of the surrounding landscape. The mismatch

and time-dependent relationship between soil moisture dy-

namics in grassland and agricultural land cover, such as winter

wheat, force scientists to use models to derive the latter from

the former (Han et al. 2012; Lollato et al. 2016; Krueger et al.

2019), or complete expensive field campaigns to better un-

derstand cropland soil moisture dynamics (e.g., Patrignani

et al. 2012). In this study, the negative effects of station siting

and land cover mismatches were limited to winter wheat, as

RAE was seemingly unaffected at sites surrounded by corn,

soybeans, or forest. Although the different phenology, rooting

depths, and water use efficiencies of these crops will lead to

varying soil moisture dynamics, this does not appear to influ-

ence the larger-scale spatial consistency of in situ observations.

We additionally found that site-specific characteristics were

likely primary contributors to high RAE, at least at WTX

Mesonet and ECONet stations. Specifically, several ECONet

sites that had been operating for 101 years suffered from poor

spatial representativeness linked to sensors that have been

since replaced. ECONet sites that have come online more re-

cently, with the newer sensors, do not experience the same high

RAE values. A few WTX Mesonet sites not surrounded by

winter wheat also exhibited high RAE, which was attributed to

station siting in areas downhill of irrigated agriculture, and

sensors being disturbed by animals.

Overall, our triple collocation analysis yielded two primary

conclusions: 1) observations at the vast majority of the 12001
stations included exhibit low RAE and are therefore spatially

consistent with model and satellite representations of larger

scale (10–25 km) soil moisture, and 2) those stations that ex-

hibit high anomaly error are likely influenced by unrepresen-

tative land cover or site-specific factors that are difficult to

detect. Low spatial consistency (i.e., high RAE) can create

serious issues when using in situ observations to represent soil

moisture over a larger area such as for drought monitoring,

flood prediction and hydrologic/hydraulic modeling, and land

surface model or satellite validation. Therefore, understanding

the representativeness and reliability of sparse in situ stations

for capturing satellite footprint scale soil moisture variability is

important for appropriately evaluating the remote sensing

dataset (e.g., Miralles et al. 2010; Chen et al. 2017). Given the

results presented here, we recommend that applications utilizing

in situ soil moisture data should either 1) use a method such as

triple collocation to test the spatial consistency of the data they

are using, or 2) contact themanagers of themonitoring networks

to gain insights about the station data, in order to ensure that

the in situ observations that are being used are robust and

spatially representative. The first option is useful in situations

where the in situ stations used is sited under land cover that is

not representative of the larger-scale surrounding land cover.

This study provides an evaluation of in situ observations at

over 1200 stations across the contiguous United States as part

of the NSMN effort. It demonstrates that the vast majority of

stations exhibit high data fidelity, as assessed using triple col-

location. It is important to note that the method used here

assesses only one aspect of data fidelity and does not include

measurement accuracy or data completeness. The stations with

high error are affected by land cover and/or site-specific factors

that are more difficult to identify. However, the stations

exhibiting very highRAE represent a small fraction (,10%) of

all stations that were evaluated. The RAE values from every

station and soil depth will be published on the National Soil

Moisture website (https://nationalsoilmoisture.com), and these

values will be updated regularly as more observations, stations,

and networks come online.
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